C.U.SHAH UNIVERSITY Winter Examination-2021

Subject Name : Advanced Real Analysis

Subject Code :	5SC03ARA1	Branch: M.Sc. (Mathematics)		
Semester: 3	Date: 13/12/2021	Time: 02:30 To 05:30	Marks: 70	

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION - I

Q-1		Attempt the Following questions	(07)	
	a.	True/False: Each finite measure is a σ - finite measure.	(01)	
	b.	Define: Measure	(02)	
	c.	Let (X, \mathcal{A}) be a measurable space if $\lambda \& \mu$ are two measure on (X, \mathcal{A}) with	(02)	
		$\lambda \perp \mu$ and $\lambda \ll \mu$ then $\lambda = 0$.		
	d.	Let (X, \mathcal{A}) be any measurable space. Suppose μ is σ -finite measure on	(02)	
		(X, \mathcal{A}) then μ is saturated.		
Q-2		Attempt all questions	(14)	
	a.	State and prove monotone convergence theorem.	(07)	
	b.	Define: Locally measurable set. Let S be a non-negative simple measurable	(04)	
		function on a measure space (X, \mathcal{A}, μ) . If $\rho(E) = \int_{E} S d\mu$, $E \in \mathcal{A}$ then ρ is a		
		measure on (X, \mathcal{A}) .		
	c.	State and prove Beppo-Levi's theorem.	(03)	
OR				
Q-2		Attempt all questions	(14)	
	a.	State and prove Lusin's theorem.	(09)	
	b.	Define: Complete measure space with example and prove that (R, \mathcal{M}, m) is a	(05)	
		complete measure. Where R be a set of real numbers, m be the collection of		

Lebesgue measurable sets and *m* be Lebesgue measure.

Q-3		Attempt all questions	(14)		
	a.	State and prove Hahn-Decomposition theorem.	(07)		
	b.	Let <i>E</i> be measurable set with $-\infty < v(E) < 0$ then <i>E</i> contains a negative set <i>A</i> with	(05)		
		$\nu(A) < 0.$			
	c.	Give an example of a set whose signed measure is negative but it may not be	(02)		
		negative set.			
Q-3		OR Attempt all questions	(14)		
Q-3	a.	State and prove Jordan Decomposition theorem.	(14) (09)		
	b.	State and prove Lebesgue Dominated Convergence theorem.	(05)		
SECTION – II					
Q-4		Attempt the Following questions	(07)		
	a.	What do you mean by $\ f\ _{\infty}$?	(01)		
	b.	Define: Baire measure, Compact	(02)		
	c.	State Holder's inequality	(02)		
	d.	Give an example of measures which are mutually singular.	(02)		
Q-5		Attempt all questions	(14)		
Q-5	a.	State and prove Lebesgue Decomposition theorem.	(14)		
	u. b.	If v_1 and v_2 are finite signed measure on (X, \mathcal{A}) then	(04)		
	υ.	i) $ \alpha v_1 = \alpha v_1 $ and ii) $ v_1 + v_2 \le v_1 + v_2 $	(04)		
		OR			
Q-5		Attempt all questions	(14)		
χ.	a.	State and prove Radon-Nikodym theorem.	(08)		
	b.	State and prove Minkowski's inequality and also show that when it becomes	(06)		
		equality.			
Q-6		Attempt all questions	(14)		
Ľ	a.	Prove that L^p spaces are complete spaces.	(08)		
	b.	State and prove Density theorem.	(06)		
OR					
Q-6		Attempt all Questions	(14)		
	a.	State and prove Caratheodory theorem.	(08)		
	b.	Define Radon Nikodym derivative and write chain rule for it.	(03)		
	c.	State Tonelli's theorem.	(03)		

